某城市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图(图1,图2),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)请将条形图补充完整;(3)在扇形统计图中,“主动质疑”所对应的扇形圆心角度数为 ;(4)如果全市有16万名初中学生,那么在试卷评讲课中,“独立思考”的学生约有多少万人?
如图,已知:⊙D交y轴于A、B,交x轴于C,过点C的直线:y=-2-8 与y轴交于点P. (1)试判断PC与⊙D的位置关系. (2)判断在直线PC上是否存在点E,使得S△EOP=4S△CDO,若存在,求出点E的坐标;若不存在,请说明理由。
如图,AB为半圆O的直径,在AB的同侧作AC、BD切半圆O于A、B,CD切半圆O于E,请分别写出两个角相等、两条边相等、两个三角形全等、两个三角形相似等四个正确的结论.
如图,有三边分别为0.4m、0.5m和0.6m的三角形形状的铝皮,问怎样剪出一个面积最大的圆形铝皮?请你设计解决问题的方法.
如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论. (2)若已知AT=4,试求AB的长.
如图,BC是半圆O的直径,P是BC延长线上一点,PA切⊙O于点A,∠B=30°. (1)试问AB与AP是否相等?请说明理由. (2)若PA=,求半圆O的直径.