(本小题满分14 分)设,分别为椭圆:的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.(1)若椭圆的离心率为,求椭圆的方程;(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:
(本小题满分12分)在直角坐标平面内,已知点,其中. (Ⅰ)若,求角的弧度数; (Ⅱ)若,求的值.
23.(本小题满分10分) 将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为. (Ⅰ)若该硬币均匀,试求与; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
22.(本小题满分10分) 已知动圆过点且与直线相切. (Ⅰ)求点的轨迹的方程; (Ⅱ)过点作一条直线交轨迹于两点,轨迹在两点处的切线相交于点,为线段的中点,求证:轴.
(选修4—5:不等式选讲) 求函数最大值.
B.(选修4—2:矩阵与变换) 求使等式成立的矩阵.