如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段的中点分别为,且△ 是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过做直线交椭圆于P,Q两点,使,求直线的方程.
已知函数,,. (1)若,设函数,求的极大值; (2)设函数,讨论的单调性.
在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上. (1)求圆C的方程; (2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.
已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4. (1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式; (2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
如图,斜四棱柱的底面是矩形,平面⊥平面,分别为的中点. 求证:(1); (2)∥平面.
已知圆. (1)若直线过点,且与圆相切,求直线的方程; (2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆的方程.