在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
(本小题满分12分) 已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点. (1)求椭圆C的方程; (2)是否存在过点的直线与椭圆C相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3. (1)证明:AC⊥B1D; (2)求直线B1C1与平面ACD1所成角的正弦值.
(本小题满分12分)已知数列的前项和为,且满足,(且). (1)求证:数列是等差数列; (2)求和.
(本小题满分12分) 在中,角所对的边分别为.,. (1)求角的大小; (2)若最大边的边长为,求最小边的边长及的面积.
(本题满分12分)已知函数. (1)证明:; (2)当时,恒成立,求的取值范围.