如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,,已知AE与平面ABC所成的角为,且.(1)证明:平面ACD平面;(2)记,表示三棱锥A-CBE的体积,求的表达式;(3)当取得最大值时,求二面角D-AB-C的大小.
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = O,A1C1B1D1 = O1,E是O1A的中点.
已知函数.(1) 若在x = 0处取得极值为 – 2,求a、b的值;(2) 若在上是增函数,求实数a的取值范围.
设集合,若,求实数a的取值范围.
已知函数. (1) 若函数的图象在点P(1,)处的切线的倾斜角为,求实数a的值; (2) 设的导函数是,在 (1) 的条件下,若,求的最小值. (3) 若存在,使,求a的取值范围.
某工厂在试验阶段大量生产一种零件.这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品. (1) 求一个零件经过检测为合格品的概率是多少? (2) 任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?