在芦淞服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元/件(第1周价格),并且每周价格上涨,如图示,从第6周开始到第11周保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售。(1)求销售价格(元/件)与周次之间的函数关系式;(2)若这种时装每件进价Z(元/件)与周次次之间的关系为Z=(1≤≤16),且为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?
.已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点在直线上。 (1)求椭圆的标准方程 (2)求以线段OM为直径且被直线截得的弦长为2的圆的方程; (3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
已知+=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.
已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.
.对某电子元件进行寿命追踪调查,情况如下.
(1)列出频率分布表; (2)画出频率分布直方图; (3)估计电子元件寿命在100~400 h以内的在总体中占的比例; (4)估计电子元件寿命在400 h以上的在总体中占的比例.
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得 他们的最大速度(m/s)的数据如下表.
(1)画出茎叶图 (2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.