(本小题满分14分)已知动点和定点, 的中点为.若直线,的斜率之积为常数 (其中为原点,),动点的轨迹为.(1)求曲线的方程;(2)曲线上是否存在两点、,使得△是以为顶点的等腰直角三角形?若存在,指出这样的三角形共有几个;若不存在,请说明理由.
设的内角所对的边分别为,且. (Ⅰ)求角的大小; (Ⅱ)若,求的周长的取值范围.
已知函数(,). (1)若,求函数的极值和单调区间; (2)若在区间上至少存在一点,使得成立,求实数的取值范围.
已知函数. (1)当时,求函数的单调递增区间; (2)若,求函数的值域.
某市政府欲在如图所示的矩形的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形(线段和为两条底边),已知,,,其中曲线是以为顶点、为对称轴的抛物线的一部分. (1)以为原点,所在直线为轴建立直角坐标系,求曲线所在抛物线的方程; (2)求该公园的最大面积.
已知数列的前项和(). (1)令,求证:是等差数列; (2)令,求数列的前项和.