已知复数Z=a+bi(a,b εR),且—(i—1)a+3b+2i=0(I)求复数Z(II)若Z+εR,求实数m的值.
(理科)已知椭圆经过点,离心率为.过点的直线与椭圆交于不同的两点. (Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围; (Ⅲ)设直线和直线的斜率分别为和,求证:为定值.
(理科)已知椭圆C:的离心率为,且经过点. (Ⅰ)求椭圆C的标准方程; (Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.
(理科)已知椭圆的两个焦点分别为,.点与椭圆短轴的两个端点的连线相互垂直. (Ⅰ)求椭圆的方程; (Ⅱ)已知点的坐标为,点的坐标为.过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,若,试求满足的关系式.
(理科)已知椭圆:()的离心率,原点到过点,的直线的距离是. (1)求椭圆的方程; (2)若椭圆上一动点关于直线的对称点为,求的取值范围. (3)如果直线()交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.
(理科)已知中心在原点,焦点在轴上的椭圆过点,离心率为,点为其右顶点.过点作直线与椭圆相交于两点,直线,与直线分别交于点,. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围.