甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.
如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O'A'BC'是矩形OABC绕B点逆时针旋转得到的.O'点恰好在x轴的正半轴上, O'C'交AB于点D. (1)求点O'的坐标,并判断△O'DB的形状(要说明理由)(4分) (2)求边C'O'所在直线的解析式.(4分) (3)延长BA到M使AM=1,在(2)中求得的直线上是否存在点P,使得ΔPOM是以线段OM为直角边的直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.(2分)
甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示. (1)求甲组加工零件的数量y与时间之间的函数关系式.(2分) (2)当x=2.8时,甲、乙两组共加工零件件; 乙组加工零件总量的值为.(4分) (3) 加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱? (2分)
探究 如图①,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连结AC、EF.在图中找一个与△FAE全等的三角形,并说明理由.(5分) 应用以□ABCD的四条边为边,在其形外分别作正方形,如图②,连结EF、GH、IJ、KL.若图中阴影部分四个三角形的面积和为12,则□ABCD的面积为.(3分)
某长途汽车站规定,乘客可以免费最多携带质量a千克的行李,若超过a千克则需购买行李票,且行李票(元)与行李质量(千克)间的一次函数关系式为,现知贝贝带了60千克的行李,交了行李费7元。 (1)若京京带了80千克的行李,则该交行李费多少元? (2)求a的值.
如图□ABCD中,AE平分交BC于E,EF∥AB交AD于F,试问: (1)四边形ABEF是什么图形?请说明理由; (2)当∠B为多少度数时,四边形AECD是等腰梯形?请说明理由.