如图,在⊙O中,AD∥BC,AC⊥BD垂足为E.(1)求证:BE=CE;(2)若AD=4,M为AD的中点,延长ME交BC于F,①判断EF与BC的位置关系;②求OF的长度.
若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0), (1) 求此二次函数图象上点A关于对称轴 对称的点A′的坐标; (2) 求此二次函数的解析式.
计算(每小题3分,共6分) 用适当的方法解下列方程(每小题4分,共8分) (1) (2)用配方法解方程:
(本题8分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1. (1)断⊿BEC的形状,并说明理由; (2)判断四边形EFPH是什么特殊四边形?并证明你的判断。
在开展“雪雷锋社会实践”活动中,某校为了了解全校1200名学生参加活动的情况,随机调查了50名学生参加活动的次数,并根据数据绘成条形统计图(如图) (1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估计该校1200名学生共参加了多少次活动?
南通百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.元旦将至,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?