(本小题满分13分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
如图,抛物线第一象限部分上的一系列点与y正半轴上的点及原点,构成一系列正三角形(记为O),记。(1)求的值;(2)求数列的通项公式;(3)求证:
已知函数.若过点可作曲线的切线有三条,求实数的取值范围.
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记.(1)分别求出取得最大值和最小值时的概率; (2)求的分布列及数学期望.
已知△ABC中,角A、B、C的对边为a,b,c,向量 =,且. (1) 求角C; (2)若,试求的值.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.