(本小题10分)第(1)小题5分,第(2)题8分(1)已知直线过点且与直线垂直,求直线的方程.(2)已知直线经过直线与直线的交点,且平行于直线.求直线与两坐标轴围成的三角形的面积;
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(Ⅰ)求证:平面;(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角的余弦值.
已知函数的定义域为,的定义域为.(1)求. (2)记 ,若是的必要不充分条件,求实数的取值范围。
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2, ,6)的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
△ABC的三个内角A、B、C所对边长分别为a、b、c,已知c=3,C=60°。(1)若A=75°,求b的值;(2)若a=2 b, 求b的值。
已知是函数的一个极值点,其中(1)求与的关系式;(2)求的单调区间;(3)设函数函数g(x)= ;试比较g(x)与的大小。