【2015高考陕西,理22】(本小题满分10分)选修4-1:几何证明选讲如图,切于点,直线交于,两点,,垂足为.(Ⅰ)证明:;(Ⅱ)若,,求的直径.
(本小题满分12分)已知函数(),. (Ⅰ)求证:在区间上单调递增; (Ⅱ)若,函数在区间上的最大值为,求的解析式,并判断是否有最大值和最小值,请说明理由(参考数据:)
如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:相切于点Q. (Ⅰ)当直线PQ的方程为时,求抛物线C1的方程; (Ⅱ)当正数变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.
(本小题满分12分)如图,在三棱台中,分别为的中点. (Ⅰ)求证:平面; (Ⅱ)若平面,,,求平面与平面所成角(锐角)的大小.
(本小题满分12分)已知函数(、为常数). (1)若,解不等式; (2)若,当时,恒成立,求的取值范围.
一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分. (1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望Eξ; (2)求恰好得到n(n∈N*)分的概率.