函数的部分图象如下图所示,将的图象向右平移个单位后得到函数的图象.(1)求函数的解析式;(2)若的三边为成单调递增等差数列,且,求的值.
已知数列是等差数列,().(Ⅰ)判断数列是否是等差数列,并说明理由;(Ⅱ)如果,(为常数),试写出数列的通项公式;(Ⅲ)在(Ⅱ)的条件下,若数列得前项和为,问是否存在这样的实数,使当且仅当时取得最大值.若存在,求出的取值范围;若不存在,说明理由.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长.与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点.(Ⅰ)求、的方程;(Ⅱ)求证:;(Ⅲ)记的面积分别为,若,求的取值范围.
已知函数(,)在一个周期上的一系列对应值如下表:
(Ⅰ)求的解析式;(Ⅱ)在△中,,为锐角,且,求△的面积.
已知=(,),=(,),(ω>0),且的最小正周期是.(Ⅰ)求的值;(Ⅱ)若=(),求值;(Ⅲ)若函数与的图象关于直线对称,且方程在区间上有解,求的取值范围.
扇形AOB中心角为60°,所在圆半径为,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=;试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?