设函数.(1)求的最小正周期;(2)当时,求实数的值,使函数的值域恰为并求此时在上的对称中心.
某种报纸,进货商当天以每份1元从报社购进,以每份2元售出.若当天卖不完,剩余报纸报社以每份0.5元的价格回收.根据市场统计,得到这个季节的日销售量X(单位:份)的频率分布直方图(如图所示),将频率视为概率. (1)求频率分布直方图中a的值;(2)若进货量为n(单位:份),当n≥X时,求利润Y的表达式;(3)若当天进货量n=400,求利润Y的分布列和数学期望E(Y)(统计方法中,同一组数据常用该组区间的中点值作为代表).
平面内动点P到点F(1,0)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)若点A,B,C是Γ上的不同三点,且满足++=0,证明:△ABC不可能为直角三角形.
已知圆C1:x2+y2-2y=0,圆C2:x2+(y+1)2=4的圆心分别为C1,C2,P为一个动点,且直线PC1,PC2的斜率之积为-.(1)求动点P的轨迹M的方程;(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.
(13分)已知圆O:x2+y2=3的半径等于椭圆E:=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线l:y=x-的距离为-,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(1)求椭圆E的方程;(2)求证:|AF|-|BF|=|BM|-|AM|.
已知函数f(x)=ln(x+1)-x2-x.(1)若关于x的方程f(x)=-x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(2)证明:对任意的正整数n,不等式2+++…+ >ln(n+1)都成立.