设函数是定义在R上的奇函数,对任意实数有成立.(1)证明是周期函数,并指出其周期;(2)若,求的值;(3)若,且是偶函数,求实数的值.
图是某市月日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择月日至月日中的某一天到达该市,并停留天. (1)求此人到达当日空气质量优良的概率; (2)求此人停留期间至多有1天空气重度污染的概率.
已知函数. (1)求函数的定义域和最小正周期; (2)若,,求的值.
已知函数. (1)当且时,证明:; (2)若对,恒成立,求实数的取值范围; (3)当时,证明:.
如图所示,已知、、是长轴长为的椭圆上的三点,点是长轴的一个端点,过椭圆中心,且,. (1)求椭圆的方程; (2)在椭圆上是否存点,使得?若存在,有几个(不必求出点的坐标),若不存在,请说明理由; (3)过椭圆上异于其顶点的任一点,作圆的两条线,切点分别为、,,若直线在轴、轴上的截距分别为、,证明:为定值.
已知正项数列满足:,数列的前项和为,且满足,. (1)求数列和的通项公式; (2)设,数列的前项和为,求证:.