已知函数f(x)=ln x+ax(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.
如图,在四棱锥中,底面是菱形,且. (1)求证:; (2)若平面与平面的交线为,求证:.
已知的内角的对边分别为,. (1)若,,求的值; (2)若,求的值.
(本小题满分14分) 设函数. (1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求实数的取值范围.
(本小题满分13分)已知点在椭圆上,椭圆的左焦点为(-1,0) (1)求椭圆的方程; (2)直线过点交椭圆C于M、N两点,AB是椭圆经过原点的弦,且MN//AB,问是否存在正数,使为定值?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)已知数列的前项和为,且 (1)求数列的通项公式; (2)数列中,令, ,求.