【2015高考天津,理17】(本小题满分13分)如图,在四棱柱中,侧棱,,,,且点M和N分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的正弦值;(Ⅲ)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长
已知抛物线的焦点为,过点作直线交抛物线于两点.椭圆的中心在原点,焦点在x轴上,点是它的一个顶点,且其离心率. (1)分别求抛物线和椭圆的方程; (2)经过两点分别作抛物线的切线,切线与相交于点.证明:; (3)椭圆上是否存在一点,经过点作抛物线的两条切线,为切点),使得直线过点?若存在,求出点及两切线方程,若不存在,试说明理由.
已知直线,曲线. (1)设与相交于两点,求; (2)若把曲线上各点的横坐标压缩为原来的,纵坐标压缩为原来的得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大值.
已知椭圆与直线:交于不同的两点,原点到该直线的距离为,且椭圆的离心率为. (1)求椭圆的方程; (2)是否存在实数使直线交椭圆于两点,以为直径的圆过点?若存在,求出的值;若不存在,请说明理由.
已知函数,其中.设,若,且. (1)求的值; (2)求函数的图像在点处的切线方程.
已知曲线的极坐标方程为:,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线经过点且倾斜角为. (1)写出直线的参数方程和曲线的普通方程; (2)设直线与曲线相交于两点,求的值.