【2015高考上海,理21】已知椭圆,过原点的两条直线和分别于椭圆交于、和、,记得到的平行四边形的面积为.(1)设,,用、的坐标表示点到直线的距离,并证明;(2)设与的斜率之积为,求面积的值.
(本小题满分12分) 设函数. (1)若的两个极值点为,且,求实数的值; (2)是否存在实数,使得是上的单调函数?若存在,求出的值;若不存在,说明理由.
(本小题满分12分) 记关于的不等式的解集为,不等式的解集为. (I)若,求; (II)若,求正数的取值范围.
已知函数有三个极值点。 (I)证明:; (II)若存在实数c,使函数在区间上单调递减,求的取值范围。
已知 ⑴ 设,求. ⑵ 如果,求实数的值.
设f(x)=a ln x++x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.