(本题6分)如图,已知RtΔABC中,∠C=90°,BC=4,AC=4,现将ΔABC沿CB方向平移到Δ的位置,若平移距离为3.(1)求ΔABC与Δ的重叠部分的面积;(2)若平移距离为x(0≤x≤4),求ΔABC与Δ的重叠部分的面积y,则y与x有怎样的关系?
如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α度的角,得到矩形CFED,设FC与AB交于点H,且A(0,4)、C(8,0). (1)当α=60°时,△CBD的形状是. (2)当AH=HC时,求直线FC的解析式.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况 下,若每千克涨价1元,日销售量将减少20千克. (1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图. (1)本次抽测的男生有人, 抽测成绩的众数是; (2)请你将图2的统计图补充完整; (3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?
△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上. (1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标; (2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.
已知:如图,在▱ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E. (1)说明△DCE≌△FBE的理由; (2)若EC=3,求AD的长.