一条单线铁路线上有A,B,C,D,E五个车站,它们之间的路程如下图所示(单位:千米).两列火车从A,E相向对开,A车先开了3分钟,每小时行60千米,E车每小时行50千米,两车在车站上才能停车,互相让道、错车.两车应该安排在哪一个车站会车(相遇),才能使停车等候的时间最短,先到的火车至少要停车多长时间?
如图,已知AE∥BC,AE平分∠DAC. 求证:AB=AC.
如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2)。 (1)请在图中画出△ABC关于y轴的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标。 (2)求四边形ABED的面积。
因式分解(每题4分,共24分) (1); (2) (3) (4)(x+y)2+2(x+y)+1. (5)(m2+n2)2-4m2n2 (6)
先化简,再求值(本题8分):(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.
已知:如图1,在△ABC中,A、B、C的坐标分别为(1,0),(4,0),(0,2),点M为边BC上的中点,点N为边AB 上一点,且N的横坐标为方程2n2+5n-12=0一个根, (1)求N的坐标和直线MN的解析式 ;(3+3) (2)判断直线MN与BC的位置关系,并说明你的理由;(1+3) (3)如图2,①在图2中作出△ABC的外接圆;②过Q(,0)作直线⊥x轴,点P在直线上,且在第一象限,试确定一个点P,使得∠CPB+∠CAB=180°,求出满足条件的P点坐标.