【2015高考重庆,理18】 已知函数(1)求的最小正周期和最大值;(2)讨论在上的单调性.
已知. (1)求函数的最大值; (2)设,证明:有最大值,且.
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ. (1)求曲线Γ的方程; (2)当点P在第一象限,且时,求点M的坐标.
如图,在斜三棱柱中,O是AC的中点,平面,,. (1)求证:平面; (2)求二面角的余弦值.
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验. (1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件; (2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.
在中,角的对边分别为,且. (1)求的值; (2)若成等差数列,且公差大于0,求的值.