(本小题14分)椭圆的两焦点坐标分别为和,且过点.(1)求椭圆方程;(2)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点.试猜想的大小是否为定值,定值为多少?如果是定值,请证明;如果不是,请说明理由.
已知,写出用表示的关系等式,并证明这个关系等式.
如图,在直三棱柱中,,.棱上有两个动点E,F,且EF =" a" (a为常数).(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
记等差数列{}的前n项和为,已知,.(Ⅰ)求数列{}的通项公式;(Ⅱ)令,求数列{}的前项和.
一种放射性元素,最初的质量为500g,按每年10﹪衰减.(Ⅰ)求t年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.