(本小题满分13分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R(1)写出年利润(万元)关于年产量(千元)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)
如图,已知直角梯形所在的平面垂直于平面 (1)的中点为,求证∥面 (2)求平面与平面所成的锐二面角的余弦值
已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且 (1)求数列、的通项公式; (2)若,求数列的前项和
已知函数的图象与轴交于,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和 (1)求函数的解析式及的值; (2)若锐角满足求.
已知函数(x>0). (1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围; (2)若a≥2,b=1,求方程在(0,1]上解的个数.
已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程; (2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.