(本小题满分13分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R(1)写出年利润(万元)关于年产量(千元)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
已知sina=,aÎ(,p),cosb=-,b是第三象限的角. ⑴ 求cos(a-b)的值; ⑵ 求sin(a+b)的值; ⑶ 求tan2a的值.
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6, 求⑴ ∠ADB的大小;⑵ BD的长.
已知函数; (1)若函数在其定义域内为单调递增函数,求实数的取值范围。 (2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。
已知函数, (1)求函数的定义域; (2)求函数在区间上的最小值; (3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.