已知曲线在处的切线与直线垂直.(Ⅰ)求解析式;(Ⅱ)求的单调区间并画出的大致图象;(Ⅲ)已知函数,若对任意,总有求实数的取值范围.
如图,椭圆的焦点在x轴上,左右顶点分别为A1,A,上顶点B,抛物线C1,C2分别以A1,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.(1)求椭圆C及抛物线C1,C2的方程;(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点,求的最小值.
已知函数(1)当m=2时,求曲线在点(1,f(1))处的切线方程;(2)若时,不等式恒成立,求实数m的取值范围.
请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
已知是递增的等差数列,满足(1)求数列的通项公式和前n项和公式;(2)设数列对均有…+成立,求数列的通项公式.
如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,,AE∥CD,DC=AC=2AE=2.(Ⅰ)求证:平面BCD平面ABC(Ⅱ)求证:AF∥平面BDE;(Ⅲ)求四面体B-CDE的体积.