投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.
已知圆:内有一点,过点作直线交圆于,两点. (1)当经过圆心时,求直线的方程; (2)当弦被点平分时,写出直线的方程.
如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x1,0)、B(x2,0),与y轴的交点为C.设△ABC的外接圆的圆心为点P. (1)求⊙P与y轴的另一个交点D的坐标; (2)如果AB恰好为⊙P的直径,且△ABC的面积等于,求m和k的值.
已知动点到定点的距离比到直线的距离小1. (1)求动点的轨迹的方程; (2)取上一点,任作弦,满足,则弦是否经过一个定点?若经过定点(设为点),请写出点的坐标,否则说明理由.
已知函数. (1)求函数的极大值; (2)若时,存在的图象在图象的上方,求实数的取值范围.
已知三棱锥中,,,,,分别是,中点. (1)求证:; (2)求直线与平面所成角的正弦值.