已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(O为坐标原点),当< 时,求实数取值范围.
已知,.(1)求的最小值;(2)证明:.
已知圆,直线,以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C和直线方程化为极坐标方程;(2)P是上的点,射线OP交圆C于点R,又点Q在OP上且满足,当点P在上移动时,求点Q轨迹的极坐标方程.
如图,内接于上,,交于点E,点F在DA的延长线上,,求证:(1)是的切线;(2).
已知函数.(1)证明:;(2)当时,,求的取值范围.
已知抛物线,直线与E交于A、B两点,且,其中O为原点.(1)求抛物线E的方程;(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.