如图1,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.
如图,△ABC中各顶点的坐标分别是A(2,6)、B(6,4)、C(4,2). (1)在第一象限内,画出以点0为位似中心,位似比为 的位似图形△A1B1 C1(2)写出△A1B1 C1各点的坐标.
如图,D是AB上的一点,DF与AC相交于E,DE=EF,CF∥BA.求证:四边形ADCF是平行四边形.
某山村种的水稻2010年平均每公顷产7 200 kg,2012年平均每公顷产8 712 kg,求水稻每 公顷产量的年平均增长率.
解不等式:一x>l,并将解集在数轴上表示出来.
如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O 上一点,过C作,垂足为D。问:当AC满足什么条件时,CD为⊙O的切线,请说明理由。