某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
如图,在 ΔABC 中, ∠ ACB = 90 ° , O 是边 AC 上一点,以 O 为圆心, OA 为半径的圆分别交 AB , AC 于点 E , D ,在 BC 的延长线上取点 F ,使得 BF = EF , EF 与 AC 交于点 G .
(1)试判断直线 EF 与 ⊙ O 的位置关系,并说明理由;
(2)若 OA = 2 , ∠ A = 30 ° ,求图中阴影部分的面积.
某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.
社团名称
人数
文学社团
18
科技社团
a
书画社团
45
体育社团
72
其他
b
请解答下列问题:
(1) a = , b = ;
(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ;
(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.
一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图或列表等方法列出所有可能出现的结果;
(2)求两次摸到的球的颜色不同的概率.
如图1,在四边形 ABCD 中,如果对角线 AC 和 BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称);
②若 M 、 N 、 P 、 Q 分别是等角线四边形 ABCD 四边 AB 、 BC 、 CD 、 DA 的中点,当对角线 AC 、 BD 还要满足 时,四边形 MNPQ 是正方形.
(2)如图2,已知 ΔABC 中, ∠ ABC = 90 ° , AB = 4 , BC = 3 , D 为平面内一点.
①若四边形 ABCD 是等角线四边形,且 AD = BD ,则四边形 ABCD 的面积是 ;
②设点 E 是以 C 为圆心,1为半径的圆上的动点,若四边形 ABED 是等角线四边形,写出四边形 ABED 面积的最大值,并说明理由.
一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.
(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;
(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.