一辆客车从甲地出发前往乙地,平均速度(千米/小时)与所用时间(小时)的函数关系如图所示,其中.(1)直接写出与的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶千米,小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站、,它们相距千米,当客车进入加油站时,货车恰好进入加油站(两车加油的时间忽略不计),求甲地与加油站的距离.
问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子? 建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步,在直角坐标系中画出函数图象;第三步,根据函数图象猜想并求出函数关系式;第四步,把另外的某一点代入验证,若成立,则用这个关系式去求解. 解决问题:根据以上步骤,请你解答“问题情境”.
“五一”期间,申老师一家自驾游去了离家170千米的某地,图是他们离家的距离y(千米)与汽车行驶时间x(时)之间的函数图象. (1)他们出发半小时时,离家多少千米? (2)求出AB段图象的函数表达式. (3)他们出发2小时时,离目的地还有多少千米?
某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏? (2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
如图,正比例函数y=kx的图象经过点A(2,4),AB⊥x轴于点B. (1)求该正比例函数的解析式. (2)将△ABO绕点A逆时针旋转90°得到△ADC,写出点C的坐标,试判断点C是否在直线上,并说明理由.
某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)求该机器的生产数量; (3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系,该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)