如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.
在图所示的平面直角坐标系中表示下面各点:。 A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。 (1)A点到原点O的距离是__ __个单位长。 (2)将点C向左平移6个单位,它会与点重合。 (3)连接CE,则直线CE与轴是什么位置关系? (4)点F到、轴的距离分别是多少?
已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数。
如图,直线DE交△ABC的边AB、AC于D、E,交BC的延长线于点F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数。
如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A,B两岛的视角∠ACB是多少度?
在下面△ABC中,用尺规作出BC边上的高AE及∠A的平分线AD(不写作法,保留作图痕迹).若∠B=30º,∠C=40º.求∠DAE的度数.