辨析纠错.已知:如图,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的.证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF.∴ 四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误,你能看出来吗?(1)请你帮小明指出他错在哪里.(2)请你帮小明做出正确的解答.
如图,已知 ∠ EFC + ∠ BDC = 180 ° , ∠ DEF = ∠ B ,求证: ∠ EDC = ∠ BCD .
如图,已知 AB / / CD , ∠ BAF = 1 4 ∠ BAE , ∠ DCF = 1 2 ∠ DCE , ∠ EAF = ∠ DCF ,且 ∠ AEC + ∠ AFC = 140 ° ,则 ∠ AEC 的度数是多少?
如图, ∠ GEF 和 ∠ DFE 的角平分线相交于点 H , AB ∥ CD , ∠ B = ∠ D .求证: EH ⊥ HF .
如图,已知直线 BC / / OA , ∠ C = ∠ OAB = 100 ∘ , E , F 在 CB 上,且满足 ∠ FOB = ∠ AOB , OE 平分 ∠ COF .
(1)求 ∠ EOB 的度数;
(2)若平行移动 AB ,那么 ∠ OBC : ∠ OFC 的值是否随之发生变化?若变化,找出规律;若不变,求出这个比值;
(3)在平行移动 AB 的过程中,是否存在某种情况,使 ∠ OEC = ∠ OBA ?若存在,求出其度数;若不存在,说明理由.
如图, AB ⊥ BC , BC ⊥ CD ,在线段 DC 的延长线上有一个动点 E ,连接 BE ,已知 BF 平分 ∠ ABE .请问:当点 E 运动时, ∠ BEC : ∠ CBF 的值是否发生变化?如果不发生变化,求出这个比值;如果发生变化,请说明理由.