(本题4+6分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.
热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30º,看这栋高楼底部C处的俯角为60º,若热气球与高楼的水平距离为90 m,则这栋高楼有多高?(结果保留整数,≈1.414,≈1.732)
已知方程的解是a,求关于y的方程的解.
如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG. (1) 求证:∠EDG=45°. (2)如图2,E为BC的中点,连接BF. ①求证:BF∥DE; ②若正方形边长为6,求线段AG的长. (3) 当BE︰EC=时,DE=DG.
已知:如图,在菱形ABCD中,∠B= 60°,把一个含60°角的三角尺与这个菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转 . (1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F.求证:CE+CF=AB; (2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F.写出此时CE、CF、AB长度之间关系的结论.(不需要证明)
投掷一枚质地均匀的正方体骰子. (1)下列说法中正确的有.(填序号) ①向上一面点数为1点和3点的可能性一样大; ②投掷6次,向上一面点数为1点的一定会出现1次; ③连续投掷2次,向上一面的点数之和不可能等于13. (2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是.你同意他的说法吗?说说你的理由. (3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同. (友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)