(本题4+6分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.
解方程:(1)(2)
如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。
为了把一个长100m宽60m 的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20000㎡?如果能,求出x的值;如果不能,请说明理由。
如图,以平行四边形ABCD的顶点A为圆心,AB为半径作圆交AD,BC于点E,F,延长BA交⊙O于G。求证:=
如图,点O、B坐标分别为(0,0)(3,0),将△OAB绕O点逆时针方向旋转90°到△A1B1O(1)画出△A1B1O;(2)写出A1点的坐标;(3)求出BB1的长.