先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.(2)已知整数a、b、c是不等边△ABC的三边长,满足a2+b2=6a+8b﹣25,且c是△ABC中最长的边,求c的值.
如图,直线y=k1x+b(k1≠0)与双曲线(k2≠0)相交于A(1,2)、B(m,﹣1)两点. (1)求直线和双曲线的解析式; (2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式; (3)观察图象,请直接写出不等式k1x+b<的解集.
如图所示,已知在平行四边形ABCD中,BE=DF 求证:AE=CF.
先化简,再求值:,其中a=.
如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1). (1)求这条抛物线的解析式; (2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标; (3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75). (1)求M,N两村之间的距离; (2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离。