(本小题7分)如图1,已知是等腰直角三角形,,点是的中点.作 正方形,使点、分别在和上,连接 ,. (1)试猜想线段和的数量关系是 并证明. (2)将正方形绕点逆时针方向旋转,判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
要求tan30°的值,可构造如图所示的直角三角形进行计算. 作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=,∠ABC=" 30" ° ∴tan30°=. 在此图的基础上,通过添加适当的辅助线,可求出tan15°的值,请简要写出你添加的辅助线和求出的tan15°的值.
如图,有一个同学用一个含有30°角的直角三角板估测他们学校的旗杆AB 的高度,他将30°的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,求旗杆AB的高度(精确到0.1米).
如图,从B点测得塔顶A的仰角为60°,测得塔基D的仰角为45°,已知塔基高出测量仪器20米(即DC=20米),求塔身AD的高(精确到1米).
计算:cos 60°-3tan30°+tan60°+2sin245°.
计算: