已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.(1)求数列{an}的通项公式;(2)设bn= (n∈N*),Sn=b1+b2+…+bn,是否存在最大的整数t,使得对任意的n均有Sn>总成立?若存在,求出t;若不存在,请说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是是参数).(1)写出曲线的直角坐标方程和曲线的普通方程;(2)求的取值范围,使得,没有公共点.
(本小题满分10分)选修4-5:不等式选讲已知函数. (1)当时,求函数的定义域;(2)若关于的不等式的解集是,求的取值范围.
(本小题满分10分)选修4-1:几何证明选讲如图所示,已知与⊙相切,为切点,为割线,弦,、相交于点,为上一点,且·.(1)求证:;(2)求证:·=·.
(本小题满分12分)设定义在区间上的函数的图象为,是上的任意一点,为坐标原点,设向量=,,,当实数λ满足x="λ" x1+(1-λ) x2时,记向量=λ+(1-λ).定义“函数在区间上可在标准下线性近似”是指 “恒成立”,其中是一个确定的正数.(1)求证:三点共线;(2)设函数在区间[0,1]上可在标准下线性近似,求的取值范围;(3)求证:函数在区间上可在标准下线性近似.(参考数据:=2.718,)
(本小题满分12分) 如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点.(Ⅰ)试求椭圆的标准方程;(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.