(本题12分)设是等差数列,是各项都为正数的等比数列,且,,(Ⅰ)求,的通项公式;(Ⅱ)求数列的前n项和.
已知函数满足,是不为的实常数。(1)若函数是周期函数,写出符合条件的值;(2)若当时,,且函数在区间上的值域是闭区间,求的取值范围;(3)若当时,,试研究函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由。
已知函数是奇函数。(1)求的值;(2)请讨论它的单调性,并给予证明。
设为正整数,规定:,已知.(1)解不等式:≤;(2)设集合{0,1,2},对任意,证明:;(3)探求;(4)若集合{,[0,2]},证明:中至少包含有8个元素.
已知 。 (1)解关于a的不等式.(2)当不等式f(x)>0的解集为(-1,3)时,求实数的值
函数f(x)=(a,b是非零实常数),满足f(2)=1,且方程f(x)=x有且仅有一个解。(1)求a、b的值;(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立?为什么?(3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P的距离|AP|的最小值。