(本题12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图。(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由。
如图,在平面直角坐标系中,菱形 ABCD 的边 AB 在 x 轴上,点 B 坐标 ( − 3 , 0 ) ,点 C 在 y 轴正半轴上,且 sin ∠ CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 ⩽ t ⩽ 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S .
(1)求点 D 坐标.
(2)求 S 关于 t 的函数关系式.
(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B 、 C 、 Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.
为了落实党的“精准扶贫”政策, A 、 B 两城决定向 C 、 D 两乡运送肥料以支持农村生产,已知 A 、 B 两城共有肥料500吨,其中 A 城肥料比 B 城少100吨,从 A 城往 C 、 D 两乡运肥料的费用分别为20元 / 吨和25元 / 吨;从 B 城往 C 、 D 两乡运肥料的费用分别为15元 / 吨和24元 / 吨.现 C 乡需要肥料240吨, D 乡需要肥料260吨.
(1) A 城和 B 城各有多少吨肥料?
(2)设从 A 城运往 C 乡肥料 x 吨,总运费为 y 元,求出最少总运费.
(3)由于更换车型,使 A 城运往 C 乡的运费每吨减少 a ( 0 < a < 6 ) 元,这时怎样调运才能使总运费最少?
如图,在 Rt Δ BCD 中, ∠ CBD = 90 ° , BC = BD ,点 A 在 CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF ⊥ EA ,交 CD 所在直线于点 F .
(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: AE = EF ;
(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 AE 与 EF 又有怎样的数量关系?请直接写出你的猜想,不需证明.
某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为 y (件 ) ,与甲车间加工时间 x (天 ) , y 与 x 之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差 z (件 ) 与甲车间加工时间 x (天 ) 的关系如图(2)所示.
(1)甲车间每天加工零件为 件,图中 d 值为 .
(2)求出乙车间在引入新设备后加工零件的数量 y 与 x 之间的函数关系式.
(3)甲车间加工多长时间时,两车间加工零件总数为1000件?
为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:
(1)直接写出 a 的值, a = ,并把频数分布直方图补充完整.
(2)求扇形 B 的圆心角度数.
(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.