(满分14分)已知是定义在R上的奇函数,且当 时,.(Ⅰ)求的解析式;(Ⅱ)问是否存在这样的正数a, b使得当 时,函数的值域为,若存在,求出所有a, b的值,若不存在,说明理由.
已知椭圆,分别为左顶点和上顶点,F为右焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行. (1)求椭圆的离心率; (2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹). (1)如果甲只射击次,求在这一枪出现空弹的概率; (2)如果甲共射击次,求在这三枪中出现空弹的概率; (3)如果在靶上画一个边长为的等边,甲射手用实弹瞄准了三角形区域随机射击,且弹孔都落在三角形内。求弹孔与三个顶点的距离都大于1的概率(忽略弹孔大小).
已知命题,若是的充分不必要条件,求实数的取值范围.
已知椭圆的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程; (2)设为椭圆的左、右焦点,过作直线交椭圆于、两点,求的内切圆半径的最大值
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值. (Ⅰ)求函数f(x)的解析式; (Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4; (Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.