如图,在矩形ABCD中,AB = 4,BC = 3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上.(1)证明:AD⊥平面DBC;(2)求三棱锥D-ABC的体积.;(3)若在四面体D-ABC内有一球,当球的体积最大时,球的半径是多少?
已知点,点是直线和直线的交点. (1)求与的交点的坐标; (2)求的面积.
若不等式的解集为是, (1)求的值 (2)求不等式的解集.
在中,三内角、、的对边分别是、、. (1)若求; (2)若,,试判断的形状.
(本小题满分14分)设数列的前项和为,已知. (1)求的值; (2)求证:数列是等比数列; (3)设,数列的前项和为,求满足的最小自然数的值.
(本小题满分14分)围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽的进出口,如图2所示.已知旧墙的维修费用为,新墙的造价为.设利用旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元). (1)将表示为的函数,并写出此函数的定义域; (2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.