(本小题满分9分)如图,点A(3,2)和点M(m,n)都在反比例函数的图像上.(1)求k的值,并求当m=4时,直线AM的解析式;(2)过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,直线AM交x轴于点Q,试说明四边形ABPQ是平行四边形.(3)在(2)的条件下,四边形ABPQ能否是菱形?若能,请求出m的值,若不能,请说明理由.
如图,∠ACB =90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.
如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。AE与CE有什么关系?证明你的结论。
一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和直角三角板,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案并说明理由)
一个多边形的内角和比四边形的内角和多540°,并且这个多边形的各内角都相等,这个多边形的每个内角等于多少度?
如图AC⊥BC,BD⊥AD,AC=BD,求证:BC=AD。