如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点. (1)求m的值及直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA; (3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
如图所示在平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD. (1)求证:△ABF∽△CEB; (2)若S△DEF面积为2,求S平行四边形ABCD的面积。
已知,求。
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近________; (2)假如你去摸一次,你摸到白球的概率是_______,摸到黑球的概率是_______; (3)试估算口袋中黑、白两种颜色的球各有多少只?
如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE。
用适当的方法解下列方程 (1)(2)