(本小题满分12分)设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),,动点M(x,y)的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状;(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程。
椭圆的两焦点坐标分别为和,且椭圆经过点.(1)求椭圆的方程;(2)过点作直线交椭圆于两点(直线不与轴重合),为椭圆的左顶点,试证明:.
如图,已知平面四边形中,为的中点,,,且.将此平面四边形沿折成直二面角,连接,设中点为.(1)证明:平面平面;(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.(3)求直线与平面所成角的正弦值.
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
如图所示,扇形,圆心角的大小等于,半径为2,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是半径的中点,求线段的长;(2)设,求面积的最大值及此时的值.
已知数列为等差数列,且.(1)求数列的通项公式;(2)证明 .