某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性大?
(13分) 已知.求值: (1); (2).
已知定点,定直线,动点 (Ⅰ)、若M到点A的距离与M到直线l的距离之比为,试求M的轨迹曲线C1的方程. (Ⅱ)、若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程.
已知函数,当,有极大值7;当时,有极小值. (Ⅰ)、求,,的值. (Ⅱ)、设,求的单调区间.
已知顶点是坐标原点,对称轴是轴的抛物线经过点A. (Ⅰ)、求抛物线的标准方程. (Ⅱ)、直线过定点,斜率为,当为何值时,直线与抛物线有两个公共点?
已知函数 (Ⅰ)、求这个函数的导数 (Ⅱ)、求这个函数在处的切线方程