某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性大?
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米。 (1)分别用x表示y和S的函数关系式,并给出定义域; (2)怎样设计能使S取得最大值,并求出最大值。
已知二次函数的二次项系数为,且不等式的解集为. (1)若方程有两个相等的实数根, 求的解析式; (2)若的最大值为正数,求的取值范围.
已知命题p:,命题q:. 若“p且q”为真命题,求实数m的取值范围.
(本小题满分14分)已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分13分) 已知向量m=n=. (1)若m·n=1,求的值; (2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足求f(A)的取值范围.