某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性大?
(本小题满分8分)如图,矩形ABCD中,AD^平面ABE,AE=EB=BC=2,F为CE上的一点,且BF^平面ACE,AC与BD交于点G。 (1)求证:AE^平面BCE; (2)求证:AE//平面BFD; (3)求三棱锥C-BFG的体积。
(本小题满分8分)已知圆c:(x-1)2+y2=4,直线l:mx-y-1=0 (1)当m=–1时,求直线l圆c所截的弦长; (2)求证:直线l与圆c有两个交点。
(本小题满分8分)已知直线l经过点(0,-2),其倾斜角的大小是60° (1)求直线l的方程; (2)求直线l与两坐标轴围成三角形的面积。
(本小题满分6分)对于函数f(x),若存在x0ÎR,使f(x0)=x0成立,则称点(x0,x0)为函数的不动点,已知函数f(x)=ax2+bx-b有不动点(1,1)和(-3,-3),求a、b的值。
已知定义在R上的函数,其中为常数 (1)若是函数的一个极值点,求的值; (2)讨论函数的单调性; (3)当时,若函数在处取得最大值,求的取值范围.