某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性大?
(本小题14分)已知集合.求:(1);(2)若,且,求的范围.
已知函数.(Ⅰ)讨论的单调性;(Ⅱ)设.当时,若对任意,存在,使,求实数的最小值
已知椭圆()的两个焦点分别为,点P在椭圆上,且满足,,直线与圆相切,与椭圆相交于A,B两点.(Ⅰ)求椭圆的方程;(Ⅱ)证明为定值(O为坐标原点)
如图,在长方体中,,且.(Ⅰ)求证:对任意,总有;(Ⅱ)若,求二面角的余弦值;(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.
已知,若能表示成一个奇函数和一个偶函数的和.(Ⅰ)求和的解析式;(Ⅱ)若和在区间上都是减函数,求的取值范围.