在中,三个内角的对边分别为,若,试问是否成等差数列,若不成等差数列,请说明理由;若成等差数列,请给出证明。
(本小题满分12分)已知函数. (1)若为函数的极值点,求实数的值; (2)若时,方程有实数根,求实数的取值范围.
(本小题满分12分)中,角的对边分别为,已知点在直线上. (1)求角的大小; (2)若为锐角三角形且满足,求实数的最小值。
(本小题满分10分)已知函数,且当时,的最小值为2, (1)求的单调递增区间; (2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
已知定义在R上的奇函数 满足 ,且 时,,给出下列结论: ①;②函数在 上是增函数; ③函数的图像关于直线x=1对称; ④若 ,则关于x的方程在[-8,16]上的所有根之和为12. 则其中正确的命题为_________.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; ②证明:不等式