(本小题满分14分)已知等差数列的各项均为正数,,前n项和为Sn,数列是等比数列,(1)求数列的通项公式.(2)求证:对一切都成立.
(本小题满分13分)已知椭圆()的离心率为,是椭圆的焦点,点,直线的斜率为,为坐标原点. (1)求椭圆的方程; (2)设过点的直线与相交于、两点,当的面积最大时,求的方程.
(本小题满分12分)已知三棱柱中,侧棱垂直于底面,,,,,点在上. (1)若是中点,求证:平面; (2)当时,求二面角的余弦值.
(本小题满分12分)已知正项等比数列中,,且成等差数列. (1)求数列的通项公式; (2)设,求数列的前n项和.
(本小题满分12分)已知函数. (1)求的值; (2)求函数的最小正周期和单调增区间; (3)说明的图像是如何由函数的图像变换所得.
【改编】(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站.其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站.记者对广东省内的6个车站随机抽取3个进行车站服务满意度调查. (1)求抽取的车站中不含佛山市内车站(包括三水南站和佛山西站)的概率; (2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X,求X的分布列及其均值(即数学期望).