(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得分,答错不答都得分,已知甲队人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.(Ⅰ)求随机变量的分布列及其数学期望;(Ⅱ)求在甲队和乙队得分之和为的条件下,甲队比乙队得分高的概率.
如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC. (1)证明:EO∥平面ACD; (2)证明:平面ACD⊥平面BCDE.
如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点. 求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.
已知四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC. (1)求证:BE∥平面PDA; (2)若N为线段PB的中点,求证:NE⊥平面PDB.
如图甲,⊙O的直径AB=2,圆上两点C、D在直径AB的两侧,且∠CAB=,∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题: (1)求三棱锥C-BOD的体积; (2)求证:CB⊥DE; (3)在上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,BD=4,AB=2CD=8. (1)设M是PC上的一点,证明:平面MBD⊥平面PAD; (2)当M点位于线段PC什么位置时,PA∥平面MBD? (3)求四棱锥P-ABCD的体积.