如图,已知斜三棱柱,,,在底面上的射影恰为的中点, 又知.(Ⅰ)求证:平面; (Ⅱ)求到平面的距离;(Ⅲ)求二面角的平面角的余弦值.
甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记分,海选不合格记分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望.
如图,四棱锥的高为,底面是边长为的正方形,顶点在底面上的射影是正方形的中心.是棱的中点.试求直线与平面所成角的正弦值.
求的展开式中二项式系数最大项.
函数在时取得极小值.(1)求实数的值;(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,请说明理由.
设函数其中且.(1)已知,求的值;(2)若在区间上恒成立,求的取值范围.