【改编】(本小题满分13分)已知F1、F2分别为椭圆C:(a>b>0)的左、右焦点, 且离心率为,点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在斜率为k的直线与椭圆C交于不同的两点M、N,使直线与的倾斜角互补,且直线是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.
如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C:找到一个点E,从E点可以观察到点B、C。并测得以下数据:CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B两 点之间的距离。
已知函数f(x)=|x+1|+|x﹣2|﹣m(I)当时,求f(x) >0的解集;(II)若关于的不等式f(x) ≥2的解集是,求的取值范围
已知直线C1:,(t为参数),圆C2: (θ为参数).(I)当α=时,求C1与C2的交点的直角坐标;(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
如图,直线经过⊙上的点,并且⊙交直线于,,连接.(I)求证:直线是⊙的切线;(II)若⊙的半径为,求的长.
已知函数(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;(Ⅱ)若g(x)= +在1,+∞)上是单调函数,求实数a的取值范围.