已知直线C1:,(t为参数),圆C2: (θ为参数).(I)当α=时,求C1与C2的交点的直角坐标;(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
设数列满足条件:,,,且数列是等差数列.(1)设,求数列的通项公式;(2)若, 求;(3)数列的最小项是第几项?并求出该项的值.
在边长为a的正方形ABCD中,分别为BC,CD的中点,、分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥,如图所示.(1)在三棱锥中,求证:;(2)求四棱锥的体积.
某校为了更好地落实新课改,增加研究性学习的有效性,用分层抽样的方法从其中A、B、C三个学习小组中,抽取若干人进行调研,有关数据见下表(单位:人)(1)求表中的值
(2)若从B、C学习小组抽取的人中选2人作感想发言,求这2人都来自C学习小组的概率.
在锐角中,分别是角的对边,,.(1)求的值; (2)若,求的面积
已知平面向量=(,1),=(),,,. (1)当时,求的取值范围; (2)设,是否存在实数,使得有最大值2,若存在,求出所有满足条件的值,若不存在,说明理由